
Naval Research Laboratory 8M FILE: COPy
Washington, DC 20375-5000

NRL Memorandum Report 6272

Approximation of Viscoelastic Stresses from
Newtonian Turbulent Kinematics00

o0
00 J. V. LAWLER, E. W. HENDRICKS, R. A. HANDLER AND R. I. LEIGHTON

oCenter for Fluids/Structure Interactions Branch
Laboratory for Computational Physics and Fluid Dynamics

September 1, 1988

DTIC

SELECTOCT1 7t988D

Approved for public release; distribution unlimited.

S101 4 Oo8



SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE -•',:4o ,m:.,118

Ia. REPORT SECURITY CLASSIFICATION I0 RESTRICT;VE MARK.NGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVALABiL TY OF ••EDOP

Approved for public release; distribution
2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATiON REPORT 7,,M3E•S,

NRL Memorandum Report 6272

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING RC.ANiZA" ON
(If applicable)

Naval Research Laboratory Code 4420

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Washington, DC 20375-5000

8a. NAME OF FUNDINGISPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT iNSTRUMENT OEP'.T.F'CAT 0 "
ORGANIZATION (If applicable)

Office of Naval Research

84L ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROjECT TASK WORK .,NiT
Arlington, VA 22217 ELEMENT NO NO NO RR023- ACCESSON NO

61153N 01-41 DN158-015

11. TITLE (Include Security Classification)

Approximation of Viscoelastic Stresses from Newtonian Turbulent Kinematics

12. PERSONAL AUTHOR(S)
Lawler, J.V., Hendricks, E.W., Handler, R.A. and Leighton, R.I.
13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year. Month. Day) 15 DACE CO&,%

Interim FROM 4/86 TO-4/L8 1988 September 1 57
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identity by Olock numOer)

FIELD GROUP SUS-GROUP Drag reduction;
Turbulence p'
Non newtonian - -

19 ABSTRACT (Continue on reverse if necessary and id4ntify by block number)

-- -- A report on work conducted in the area of non-Newtonian turbulent kinematics. A summary of rheolog-

ical measurements in turbulent non-Newtonian flows is given. A technique for approximating non-Newtonian
viscoelastic stresses from Newtonian kinematics obtained by direct numerical simulation is presented.

20 DISTRIBUTION/ AVAILABILITY OF ABSTRAC' 21 ABSTRACT 7ECjRI 7 C _AS -- I

(1UNCLASSIFIED/UNLIMITED C SAME AS Rpr C] 7niC JSERS UNCLASSIFIED
22a NAME OF RESPONSIBLE ýNOiVIDUAL 22b "ELEPI'Ot ncIu.e , CJ e I 2.. - "

Eric W. Hendricks (202') 767-2516 Coide :,-2r)

DO Form 1473. JUN 86 v,,us .Ion5 t' .moe.,
,Si., • tI) 02-L;-') - -,-i) =



CONTENTS

IN TRO D U CTIO N ................................................................................................. I

RHEOLOGICAL CHARACTERIZATION OF DRAG REDUCING FLUIDS ........................ 2

TRANSIENT VISCOELASTIC STRESSES IN TURBULENT FLOWS ............................... 14

CONCLUSIO N S ................................................................................................. 22

REFER EN C ES ..................................................................................................... 24

OTMC

COPY
INSR:CTED

Aooession For

NTIS GRA&I
DTIC TAB 0
Unannouneed [l
Justifioation

By

Distribution/

Availability Codes
SJAvali-- and/or

Dist Special



I

APPROXIMATION OF VISCOELASTIC STRESSES FROM
NEWTONIAN TURBULENT KINEMATICS

INTRODUCTION

Experimentally, it has been determined that small amounts of high molecular

weight polymers (a few parts per million by weight) dissolved in a solvent can reduce

the turbulent flow frictional resistance of that solution by 75 percent. Since the viscosity

of a polymer/solvent mix is increased over that of the solvent alone, the fact that viscous

drag is decreased is somewhat surprising. The study of drag reducing, non-Newtonian

fluid flows received its initial impetus from the work of Toms (1948). Since Toms.

the examination by fluid dynamicists of the turbulent flow properties of thermody-

namically dilute solutions of long chain high-molecular weight polymers has generated

literally hundreds of publications, of which a majority are experimental investigations.

This preponderance of experimental studies is no doubt due to the difficult theoreti-

cal nature of the problem, which includes not only turbulence but the interaction of

a viscoelastic fluid with turbulence. The study of viscoelastic fluids as they relate to

drag reduction is itself an area of investigation among rheologists. Several excellent re-

views of the available experiments and possible explanations of this phenomenon have

been conducted since Toms original work: Lumley (1969) and (1973), Hoyt (1972),

Virk (1975), Little et al. (1975), and Berman (1978). The reader is referred to Lumley

(1973), Berman (1978) and a recent work by Ryskin (1987a) for theoretical discussions

of the drag reduction phenomenon. This paper is in two sections. In the first section.

we review the rheological properties of dilute polymer solutions. In the second section.

we present a method for approximating viscoelastic stresses in a turbulent flow.

"Presently at Hoechst Celanese Research Division, Summit. .J 07901.

Manuscript approved May 14, 1988.



Rheological Characterization of Drag Reducing Fluids

In this section, we discuss the measurements of the rheological properties of di-

lute polymer solutions as they relate to turbulent flow drag reduction. The flow of a

viscoelastic polymer solution is markedly different in many ways from its Newtonian

counterpart. These differences are due to the long chain structure of polymers. The

flow properties of viscoelastic fluids are often rate-dependent. Once a threshold strain

rate has been exceeded the shape of the polymer molecule becomes anisotropic and

partially aligns with the flow. This anisotropy produces stresses along the backbone

of the aligned molecule. In shearing flows, components of the anisotropic stresses in

a viscoelastic fluid that act in a direction normal to the deformation gradient are.

not surprisingly, called "normal" stresses. The large number of atoms in a polymer

molecule allow large deformations. The time required for a polymer to diffuse back

to equilibrium is many orders of magnitude greater than the corresponding relaxation

times of Newtonian fluids. Consequently, polymer solutions have relaxation times from

milliseconds to seconds. Finally, the stresses in a polymer solution are a function of the

previous deformations of the fluid, since these deformations have altered the current

conformation of the polymers. This dependence on past events is termed "memory".

We will begin with a section on constitutive equations. Followed by a discussion

of extensional viscosity and its relation to a drag reduction mechanism. A discussion

will be presented on rheologists attempts to quantify some of the constants in the

consititutive equations and to predict turbulent flow modifications. The effects of

entanglements and degradation on drag reduction meas'.,-.ments will be examined.

Finally, a discussion of some important recent research Ind aims for the future.

Constitutive Equations

Constitutive equations are mathematica' expressions which model the stress level

and distribution in a polymer solution or melt (see recent books by Tanner 1.S5.

Bird et al. 1987a & 19871. and Lar,)oa 1988). The validity of rile many proposed
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constitutive equations as accurate models for dilute polymer solutions in a turbulent

flow is largely untested, because the state of polymers in turbulent flows is so poorly

understood. Consequenti -nany of the assumptions invoked to develop a specific

constitutive equation cannot b ý tested. Since a plethora of constitutive equations exist

and turbulent flow is extremely complex, these equations have historically been tested

in simple but relevant flows. Measurements of stresses, velocities, orientations, or

geometry-specific flow parameters can also be conducted in these simpler flows for the

independent determination of some or all of the constants or functions which appear

in a constitutive equation.

Elongational Properties

Elongational viscosity is defined as the constant of proportionality between the

difference of the spanwise and the axial normal stresses and the elongation rate. The

modifications of turbulent flow, cavitation, and other flow instabilities by polymer so-

lutions is the result of the high elongational viscosity of dilute polymer solutions (Ting

and Hunston 1977). On a-unit concentration basis, the magnitude of the effect increases

with decreasing concentration. From this observation, Ting and Hunston postulate that

the large elongational viscosity is a polymer-solvent and not polymer-polymer interac-

tion because there are ten billion to one trillion solvent molecules for each polymer

molecule in these dilute solutions. It is unfortunate that the measurements of this

important property remain uncertain. The methods used to obtain an estimate of the

elongational viscosity are discussed below.

The excess pressure required to force a dilute polymer solution through an orifice

is the result of the high elongational viscosity of these solutions. This flow geometry

is presented in Figure 1. To obtain an order of magnitude estimate of the e[on~a-

tional viscosity, Fruman and Barigah (1982) utilize data from an orifice flow with the

assumption that the elongational viscosity is a constant and independent of strain or

strain rate. These analyses indicate that the elongational viscosity is several orrders ,of

magnitude larger than the shear viscosity.
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Fiber spinning and a ductless syphon have been employed to measure the elonga-

tional viscosity of dilute solutions. The fiber-spinning and ductless syphon geometries

are depicted in Figures 2 and 3, respectively. By assuming an absence of radial gradi-

ents and measuring the force along the fluid. the elongational stresses and elongational

viscosities can be calculated from photographs taken of the profile of the fluid. As with

orifice flow, the measured elongational viscosities of solutions are found to be about

three orders of magnitude larger than the shear viscosities (Weinberger & Goddard 1974

and Usui & Sano 1981). The durations of the elongations in fiber spinning/ductless

syphon experiments are too short to produce steady-state stresses in the solutions.

although this assumption is routinely made in the analyses.

Attempts have been made to minimize the errors in the measurement of elonga-

tional properties. Bald and Metzner (1977) have calculated the response of various

fluid models to the time-dependent strain history occurring along the length of a fiber

to simulate more accurately the stress history. Recent work by Matthys (1987) has

shown that radial gradients do exist and that the axial velocity on the outer surface is

greater than at the core. Becraft and Metzner (1988) discuss methods to reduce other

sources of errors in making measurements during a fiber-spinning experiment.

Most constitutive equations predict this elongational viscosity. Chakraborty and

Metzner (1986) have been able to simulate qualitatively the orifice flow experiments of

James and Saringer (1982) by calculating the stresses in the flow with an Oldroyd-B

fluid model. Ryskin (1987b) has also been able to simulate these same excess pressure

drop experiments with his "Yo-Yo" model, which he has also used to predict some

aspects of turbulent drag-reduction (Ryskin 1987a). As interesting as these predictions

are they are really only of value if they can be extended to other flows. Baid and

Metzner (1977) have been able to model shear and elongational flows with the OQtlroyd-

B model but, only by selecting a different set of parameters for each How.

An important tool in the measurement of the rheological properties is dow bire-

fringence, which allows the stress and its orientation to be determined opti'•ally t Loi•e
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1955, Philippoff 1956, and Brodnyan et al. 1957). Dandridge et al. (1979) have mea-

sured the birefringence of an aqueous solution of PEO over a concentration range of

50 to 1350 ppm in a shear flow above a shear rate of 2000 s-1 . The birefringence of

polymer solutions has been measured in elongational flow with the the crossed-slots

and opposed-jets geometries. Schematic diagrams of these geometries are shown in

Figures 4 and 5. In these experiments the extension rate at which the polymers be-

gin to uncoil and hence to show strong birefringence can be determined. In the small

regions of these flows undergoing elogational deformations, once uncoiling begins it is

expected that the polymer will completely extend, if the residence time is sufficiently

long (DeGennes 1974). This complete extension produces the strong birefringence in

a small region of the flow domain. Keller and Odell (1985) demonstrate that bire-

frigence in crossed slots can also be used to measure the molecular weight distribution

of polymers. The technique is especially accurate for measuring the high molecular

weight tail, which is difficult to obtain by standard methods. At a flow rate above the

onset of birefringence a second birefringence phenomenon appears, which consists of a

large area of birefringence within the flow domain (flaring). Researchers interpret this

second transition as the elongation rate at which interconnected polymer chains cannot

disentangle in time to deform principally as isolated chains (Odell et al. 1985).

The four-roll mill is another useful rheological tool. It can be used to examine

the effect of elongational deformations on polymer solutions. The deformation history

with counter-rotating rollers in a Newtonian fluid is close to an ideal hyperbolic flow

(Crowley et al. 1976). The principal limitations of this device are that high elongation

rates cannot be obtained at low Reynolds number. The stresses in a dilute solution of

polystyrene (PS. 50-100 ppm) in a viscous solvent is reported by Fuller and Leal k 19SO)

in this geometry. The birefringence levels observed during elongation are three ro four

orders of magnitude higher than those observed previously in shear flows at comparable

deformation rates. They are able to model closely the birefringence and stresses of this

PS solution with a dumbbell model which included a nonlinear hydrodynamic friction.

an internal viscosity, and a molecuiar weight distribution.



Shear Viscosity and Normal Stresses

Shear viscosity (hereafter referred to as simply "viscosity") is the easiest rheological

property of dilute solutions to measure accurately. The "ease" with which the viscosity

of dilute polymer solutions can be measured is more a consequence of the difficulty

in measuring other rheological properties. Most standard rheological techniques for

measuring non-Newtonian viscosities cannot be used with dilute aqueous solutions due

to the low viscosity of water. Further complications are the significant non-Newtonian

entrance effects (Bagley 1957) and adsorption-entanglement layers (Hikmet et al. 1985)

that develop in capillary rheometers, which are the rheometers most often used to

characterize dilute solutions. However, it can be reliably stated that the viscosities

of aqueous dilute solutions of polymers (less than 200 ppm) are less than ten percent

higher than the viscosities of the solvents.

The most important change in the viscosity of a non-Newtonian fluid is that the

viscosity becomes a function of shear rate. The combination of a relative viscosity close

to unity and a low solvent viscosity makes determining the viscosity of dilute polymer

solutions as a function of shear rate difficult with current rheometers. The relative

viscosity is the ratio of the solution viscosity to the solvent viscosity. The viscosities

of these solutions are only very weak functions of shear rate. Hoyt and Fabula (1964)

have measured no change in viscosity for polyethylene oxide solutions (PEO. Union

Carbide WSR-301) ranging in concentration from 10 to 100 pprn up to a shear rate

of 500,000 s-1. Belokon et al. (1973) have reported that aqueous solutions of PEO

(WSR-301) only begin to depend on shear rate above a concentration of 200 ppm.

Solutions with concentrations less than 100 ppm are the critical fluids for testing drag

reduction theories; these solutions are the most efficient drag-reducers. Hoyt 1971)

finds that the minimum concentration required to reach the maximum drag reduction

asymptote is only 20 to 30 ppm for an aqueous PEO (WSR-301) solution, with a 2 to

4 ppm solution producing one-half of the maximum reduction.

The lack of significant shear thinning (the reduction of viscosity with increasing
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shear rate) of the strongly drag-reducing solutions cited above demonstrates that shear-

thinning is not the principal mechanism for drag reduction. Further evidence is reported

by Hoyt and Fabula (1964). They have measured no reduction in turbulent drag for a

carboxy vinyl polymer (Carbopol 941) solution, which is shear-thinning but inelastic.

Finally, very few measurements of the normal stresses of these fluids have been

reported for the same reasons that the viscosity as a function of shear rate curve is

difficult to determine for dilute aqueous solutions. However, normal stresses of more

concentrated solutions can be measured. The magnitude of the normal stress is related

to the relative viscosity of the solution. At higher concentrations (that is, high relative

viscosities), the normal stresses can be separated from the shear stress and other sources

of noise.

Relaxation Times From Shear Measurements

The relaxation time of a polymer solution represents the time scale over which de-

formed polymer conformations return to equilibrium conformations. Baid and Metzner

(1977) have measured the viscosity and normal stresses for a 100 ppm polvacrylamide

(PAC, Dow Separan AP-30) in a glycerin/water solution. They have estimated the

Maxwell relaxation time (normal stress divided by twice the shear stress and shear

rate) to be about 50 ms. Darby and Chang (1984) have measured the shear rate at

which the viscosity decreases for PAC (AP-30) in water. The reciprocal of this critical

shear rate is another estimate of the relaxation time for a viscoelastic fluid. Darby

and Chang's estimate is about 10 to 20 s for a 100 ppm solution. A disagreement of 3

orders of magnitude.

The relaxation time, from linear viscoelastic theory, is linearly proportional ,o the

viscosity of the solvent, if one neglects the change in the intrinsic viscosity (lue to a

change in the solvent (Rouse 1953). Therefore, the differences in relaxation times dis-

cussed above may be be even greater if measured in the same solvent. The ambiguity

and uncertaintity of shear measurements in dilute solutions make determining relax-



ation times and other consitutive equation parameters from shear flow measurements

inadvisable.

Relaxation Time Based On Elongational Flow

The reciprocal of the critical extension rate is equal to twice the relaxation time

of the polymer molecule. F~arrell et al. (1980) find that the relaxation time and the

dependence of that time on molecular weight of a 2500 ppm solution of polystyrene

agrees with the Zimm molecular model for a non-free draining molecule (Zimm 1956).

James and Saringer (1982) measure a relaxation time in their orifice experiments for a

PEO solution. The measured relaxation time is different from the Zimm model relax-

ation time by a factor of three. The discrepancy in these two results reported for the

orifice geometry is probably due to the uncertainty in determining the elongation rates

occurring iu this geometry. Optical techniques could be used to determine elongation

rates.

Mixed Flows

Turbulent flows are combinations of shear and elongational deformations. Recent

analysis of the numerical simulations of wall-bounded Newtonian turbulence by our-

selves (Lawler et al. 1987) finds that the shear component of deformation near the

wall is large enough to enhance the resistance to elongation (increase elongational vis-

cosity) for a large class of fluid models. It is critical that fluid models be tested in

at least mixed laminar flows. Recent experimental results for flow into an orifice by

James and his co-workers (1987) demonstrate that preshearing of the fluid before it

enters an orifice has a profound effect on the excess pressure drop. One expianarioln

is that a deformed polymer molecule is much more rapidly elongated than a molecule

in its equilibrium configuration. Another explanation is that networks form (luring tihe

shearing, and these structures require higher stress levels to deform in an elon-ational

flow than do individual molecules. The effect of preshearing might be predicted i y Ln
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Oldroyd-B or "Yo-Yo" model if this new complex flow were simulated. However, the

analyses by Chakraborty & Metzner (1986) and Ryskin (1987b) must be expanded to

at least two-dimensional flow problems if preshearing or other more realistic kinematics

are to be modelled.

The aforementioned, four-roll mill is an excellent geometry in which to study com-

plex flows. A wide range of deformations, between pure elongation and simple shear.

can be generated by varying the ratio of the angular velocities of the rollers. As dis-

cussed above, Fuller and Leal (1980) predicted the birefrinvence of a PS solution for

both pure elongation. They obtained equally accurate predictions of the birefringence

in mixed flows with their model. Dunlap and Leal (1987) extend the measurements

in the four-roll mill to a wider range of mixed flows. They then calculate the birefrin-

gence of several molecular models to determine which models are able to predict the

flow behavior in these mixed flows. The model of Phan-Thien et al. (1984), which

includes conformation-dependent, anisotropic friction and strain-inefficient rotation. fit

the behavior of the polymer solutions better than molecular models without these fea-

tures. The match to experiments is worsened if internal viscosity is added to the model

developed by Phan-Thien et al. This work by Dunlap and Leal is an excellent example

of how mixed flow experiments can and should be used to test and develop constitutive

equations.

Simulation of Complex Flows

The direct numerical simulation of low-Reynolds number Newtonian turbulent

flow is now possible with the advent of supercomputers. Currently, channel Iows at

Reynolds numbers of up to 3300 have been simulated. This value of Re is only about

one-third the value of Re at which significant effects of the polymer occur tas found

in our flow experiments described later in this chapter). To predict turbulent -ranl

reducing flows, one must incorporate a non-Newtonian constitutive equation into the

simulations. However. to date the determination of the polymer properties :necessarV

to form an accurate constitutive equation has not been successful. An approach "',imicl
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takes advantage of the comparison of experiments to large-scale simulations is required.

The increasing power of computers makes feasible the simulation of continuum fluid

models in complex geometries. Comparison of experiments with these calculations mar

be a better method of selecting fluid models and determining the parameters in these

fluid models than trying to measure rheological properties of these fluids directly.

A good candidate for a coupled simulation/experimental approach might be a

vortex flow. Balakirshnan and Gordon (1971) have observed experimentally that a

vortex does not form during the draining (through an orifice) of a tank filled with a

dilute polymer solution. Schematic diagrams of the differences between the flows of a

Newtonian fluid and a polymer solution are shown in Figure 7. Later these researchers

(Gordon and Balakrishnan 1972) show that the minimum concentration 'or vortex

inhibition is close to the concentration to achieve maximum drag reduction in a pipe.

A third study (Chiou and Gordon 1976) contains measurements of the axial velocity

above the orifice as a function of position. They found that this velocity is reduced by

an order of magnitude in going from the Newtonian fluid to the polymer solution.

Another possible model geometry for simulations is the flow around a vibrating

rod in a larger cylinder (see Figure 8). Chang and Schowalter (1974) present experi-

ments which show that the vortices which form in a polymer solution are rotating in

the opposite direction than those which form in a Newtonian fluid. Small vortices (not

shown on the figure) occur near the vibrating cylinder in a Newtonian fluid. Pertur-

bation calculations by Chang and Schowalter (1979) show that in an Oldroyd-B fluid

model these small vortices grow as the elasticity of the fluid is increased. Eventually.

these vortices, which are rotating in the opposite direction than the larger vortices in

a Newtonian fluid, fill the gap between the cylinders: and the original large vortices

disappear. Thus. the fluid model has been able to predict the effect of the polymer so-

lution on the flow field. The relaxation time of the polymer s-'lutions used in this study

are determined by fitting the flow behavior to the numerical simulations. Sufficient

rheological data are unavailable to obtain an independent estimate. Vlassopoulos andl

Schowalter (1988) have continued to study the flow of dilute polymer solutions in tiis

1.0
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geomety. In their new experimental apparatus, they measure the velocity field with

a laser-Doppler velocimeter. Their numerical analysis includes the ability to calculate

the velocity fields of more complex fluid models.

The onset of Taylor vortices between concentric rotating cylinders is another good

choice for the comparison of the flows of dilute solutions and fluid models. The vor-

tices are generated by an inertial instability in the flow which Taylor (1923) has ac-

curately predicted for a Newtonian fluid using perturbation theory. Denn and his

co-workers (Ginn & Denn 1969, Denn & Roisman 1969, Denn et al. 1971. and Sun

& Dern 1972) have successfully compared experiments with polymer solutions and

Second-Order Fluid model stability calculations to determine the rheological proper-

ties of the polymer solutions. For some of the polymer solutions, these rheological

properties agree with properties measured by other more standard rheological mea-

surements. Comparisons for other polymer solutions do not show agreement. Jones

et aL (1973) discuss the sources and magnitudes of the errors in determining these

rheological properties from comparing experiments with Second-Order Fluid stability

calculations. Despite the large number of experiments to measure the onset of Taylor

vortices in dilute polymer solutions, only Beard et al. (1966) and Deutsch & Phillips

(1977) have calculated the onset of Taylor vortex flow for a fluid model with memory

and elasticity. Belokon et al. (1973) find that the onset Reynolds number is not af-
fected by the very dilute drag reducing solutions. Therefore, the other aspects of the

secondary flow which are altered by the presence of the polymers (for example. the

radial and axial velocities) must be measured to test the predictive capabilities of fluid

models. These perturbation velocities can be measured accurately with a laser-Doppler

velocimeter (Gollub & Swinney 1975 and Lawler 1986).

Entanglements

Another aspect of dilute polymer solutions that must be considered when exam-

ining their affect on tubulence is molecular entanglements. Flaring in the crossed slots

and opposed jets experiments indicate that entanglements between polymer chains do
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exist in these dilute solutions (Odell et al. 1985). The state of entanglements may also

depend on previous flow history, so experiments limited to pure elongacional flows ex-

amine conformations which are different than the conformations found in mixed flows.

Time of measurement, disentanglement time, and critical overlap density are all impor-

tant and interrelated. Virk et al. (1967) reports the mean radius of gyration of PEO

(WSR-301) in water as 240 nm. In a 30 ppm solution, the average spacings between

centers of polymer molecules are about 800 nm. The volume contained inside the

radii of gyration is 15 % of the total volume. In a face-centered cubic arrangement of

spheres, the sphere volume is 74 % of the total volume. Clearly, interactions between

polymers even at this dilution are quite strong, especially since the radius of gyration is

a statistical quantity and the strands of the polymer extend well beyond the calculated

radius. The size of molecules (or aggregates) in solution has been estimated by com-

paring the Pitot tube errors between polymer solutions and solutions of small particles

(Belokon et al. 1973). For PEO the volume concentration is estimated as being about

three orders of magnitude larger than the weight concentration. As demonstrated by

Kowalik et al. (1987), polymeric systems with strong intermolecular forces produce.a

further reduction in the drag over that which is observed with similar systems but

without strong interactions. In their four-roll mill geometry, Dunlap and Leal (1987)

find that the volume fraction of the solution (based on the extension of polymer chain

in elongation) must be about 5000 to affect the velocity field of the polymer solution.

Drag-reduction and pitot tube experiments are unlikely to contain polymers at such

a high volume fraction. Therefore, macroscopic manifestation of polymer-polymer in-

teractions occur at moderate volume fraction in flows which are unstable or contain

singularities.

Polymer Degradation

The breaking of polymer chains does not cause any of the phenomena associated

with viscoelasticity or drag-reduction, but degradation of the polymer solution must be

of concern when conducting drag reduction and solution characterization experiments.

12
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Polymers in elongational flow fields break near the center of the backbone of the polymer

which provides strong evidence that the polymers are unraveled during elongational

flows (see Odell & Keller 1986 and Merr'll & Horn 1984). Breaking in the center greatly

reduces the average molecular weight, and the higher molecular weight polymers break

first, so degradation greatly changes the viscoelasticity of polymer solutions. Also.

chemical degradation can ruin polymer solutions. For example, the polyethylene oxide

back-bone is attacked by both ferric ions and chlorine (see Hoyt 1980).

Summary

At this juncture it is worthwhile restating the important points made in this sec-

tion. The rheological property most likely to be responsible for the drag reducing

characterisitics of dilute polymer solutions (elongational viscosity) is the most difffi-

cult to measure. In fact, except for the viscosity of non-Newtonian fluids, attempts to

provide the correct values of rheological properties for a predictive model have been

unsuccessful or of limited value.

Finally, recommendations for future directions have been made. First. an research

approach must be adopted which examines flows which contain a mixture of shear

and elongation (e.g. Dunlap and Leal). Further, simultaneous numerical simulation

and experimental investigations is the only way to determine the efficacy of candidate

constitutive equations to predict changes in turbulence due to polymers.

13



Transient Viscoelastic Stresses In Turbulent Flows

The goal of our research is to predict modification of turbulence caused by vis-

coelastic fluids. Currently, the calculation of Newtonian turbulent flow taxes the avail-

able computing power of even the fastest and largest supercomputers. We need to gain

as much information as we can from the Newtonian simulations with regard to the

mechanisms by which viscoelastic fluids may respond to turbulent deformations before

attempting the simulation of viscoelastic turbulent flow.

The short term objective is to calculate viscoelastic stresses which exist in a tur-

bulent flow, if the viscoelastic fluid does not alter the Newtonian kinematics. With this

assumption, the viscoelastic stresses can then be calculated from the Newtonian kine-

matics which can be obtained from the Naval Research Laboratory's turbulent channel

flow simulations.

First, we discuss the motivation for this research - combining studies of previ-

ous drag reducing theories, non-Newtonian properties, and rheology of fluid models.

Next, we quantify the kinematics necessary for non-Newtonian behavior, especially the

enhancement of the elonrgational viscosity, and quantify the kinematics found in the

direct Newtonian simulations. Then, we present an approximate method to calculate

the stresses from the turbulence kinematics. Finally, we show kinematics from the new

de-aliased simulations, and discuss the conclusions.

Previous Drag Reduction Theories

Many drag reduction theories only correlate the Reynolds number at which drag

reduction begins to occur with a single characteristic of the viscoelastic fluid: for ex-

ample, the length and time scale correlations. Other theories are phenomenological

models based on a single property of a viscoelastic fluid: such as the relative reduction

in stress as the oscillatory frequency is increased or the finite rise time of viscoelastic

stresses.

14



No existing theory can predict the modifications of turbulence which occur due

to the viscoelasticity of the fluid. For example, the fluctuations in the streamwise

component of the velocity increases in the buffer region of turbulent viscoelastic flows

(compared to Newtonian flows), while the spanwise component decreases. A more

complete theory or analysis is required to begin to understand these important changes

in the structure of the turbulence.

Current Approach

We examine four characteristics of viscoelastic stresses. Frst. normal stresses are

those which develop normal to the shear stress. Second are the time-dependent stresses

due to the finite response time of stresses. Third, rate-dependent viscornetric functions

exist because stress levels are not linearly related to the rates of deformations. Lastly.

elongational viscosities exist because the resistances to elongational deformations are

orders of magnitude larger than for Newtonian fluids.

We use Newtonian kinematics from the Newtonian turbulence simulations to quan-

tify the importance of the four characteristics listed above. These kinematics, which

involve spatial gradients in a rapidly fluctuating velocity field, are not measurable with

current experimental techniques.

Viscometric Flows

For a Newtonian fluid in shear flow, the stress tensor contains only two non-zero

elements. A viscoelastic fluid on the other hand develops "normal" stresses besides the

two off-diagonal components. The viscosity of a viscoelastic fluid is a function of both

the shear rate and the duration of the shearing, instead of being a constant. as with

Newtonian fluids. The normal stress coefficients are also functions of the shear rate

and time, whereas these normal stress coefficients are zero in Newtonian "luids.

In pure elongational flows, a spatial velocity gradient exists in the direction of

velocity. In this deformation field, both Newtonian and viscoelastic fluids ,[cvolop
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stresses only along the diagonal of the stress tensor. However, the relative magnitudes

of these stresses in a viscoelastic fluid can be much larger than for Newtonian fluids.

The elongational viscosity is defined as the difference between the first two diagonal

components divided by the elongation rate. The elongational viscosity of a Newtonian

fluid is three, while the value for a viscoelastic fluid is a function of elongation rate and

the duration of the elongation. Note that the "normal" stresses from shear flows alter

the elongational viscosity by altering the diagonal stresses.

Time Scales

The relaxation time of a viscoelastic fluid is the time constant for the relaxation

of stresses in the fluid upon cessation of deformations. This relaxation time is also the

rate at which stresses rise to their steady values upon the imposition of deformations.

The retardation time represents the solvent contribution to the stresses I shear

flows at vanishingly small deformations. It is defined as the ratio of the solvent to the

viscoelastic fluid viscosities (at small deformations) times the relaxation time of the

viscoelastic fluid. In dilute polymer solutions, the ratio of viscosities is almost unity,

so the ratio of the retardation time to the relaxation time is also near unity.

Molecular Models and Constitutive Equations

The Maxwell molecular model represents two beads connected by a spring in series

with a dashpot. The relaxation time is equal to the ratio of the viscosity of the dashpot

to the modulus of the spring. To incorporate a solvent viscosity into the model. one can
-1

add a dashpot in parallel with the dashpot/spring elements. This model is called the

Oldroyd-B model (see Bird eP al,1987a). In order to more closely match viscoelastic

fluids, other modifications can be incorporated into a fluid model. Any constitutive

equation can be analyzed with the technique applied below. The Oldroyd-B model is

chosen because it contains the basic features of most continuum models.
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Kinematics Which Lead to Non-Newtonian Behavi r

The type of deformation a viscoelastic fluid undergoes is the prime factor in deter-

mining whether the fluid shows a marked deviation from Newtonian behavior. In shear

flows, fluid elements separate linearly with respect to time; whereas, in elongational

deformations fluid elements separate exponentially in time. Therefore, even transient

elongational deformations produce non-Newtonian behavior.

The second factor is the strength of the shear or elongational deformation. At low

flow strengths (with respect to the relaxation time of the viscoelastic fluid) the stresses

in the fluid and the flow itself are close to Newtonian. Above certain elongation rates.

infinite stresses are predicted to exist in the flow of some fluid models. It is critical to

know if these limiting rates are exceeded for long periods of time.

Another factor is the duration of the deformations. Polymers require a finite period

of time to deform. Short duration deformations only generate a Newtonian response

from the viscoelastic fluid. The viscoelastic contributions to the overall stress levels

in a fluid element rise at a rate proportional to the relaxation time of the viscoelastic

-fluid. For these contributions to affect the flow, the deformations must remain large

for a finite period of time.

Finally, it is crucial to determine the relative strength of the steady shear with

respect to the elongational components of the deformations. If the normal stresses

which develop due to the shearing are to alter the elongational stresses appreciably.

and hence -modify the flow, then the ratio of the mean shear to the magnitude of the

fluctuating elongation must be greater than one.

Strain Rate and Vorticity

An overall measure of the strength of a flow is to compare the magnitude of the

strain rate, defined as the symmetric portion of the gradient of the velocity, to the

vorticity, defined as the anti-symmetric portion of the velocity gradient. These tata at
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one point from the numerical simulations are plotted in Figure 10. The calculations

were at a Reynolds number of 3900, based on channel half-width and centerline velocity.

The point is at a distance of 16 viscous units away from the wall. A viscous unit is the

ratio of the kinematic viscosity over the shear velocity. In regions in which the strain

rate is greater than the vorticity, the molecule undergoes deformations. Otherwise the

molecules are rotating too rapidly to develop a large aspect ratio. These kinematics

cannot currently be obtained from experiments, but this type of information is easily

extracted from direct simulations.

Extensional Flow of Oldroyd-B Model With Imposed Shear

It is crucial to examine the time-dependent nature of these models. The transient

elongational viscosity of the Oldroyd-B model is shown as the lower curve in Figure

11. The elongational viscosities begin at three times the retardation time (set to 2/3

for this and all other calculations presented below) and rise to their steady-state value

only after about ten relaxation times have elapsed.

Now we can look at the effect of the presence of a mean shear on the elongational

viscosity (stresses). Steady shear is imposed on the fluid at a dimensionless value of 1.0.

while the transient elongation rate remains at 0.40. These data are the upper curve of

Figure 11. The enhancement of the elongational viscosity remains about constant with

time with respect to the no shear case. The elongational viscosity is approximately

doubled.

The steady elongational viscosity of the Oldroyd-B model is shown in Figure 12 as

the lower curve. The elongational viscosities of viscoelastic models are quite different

and bear no resemblance to the constant Newtonian elongational viscosity of three at

all elongation rates. The Oldroyd-B model has a elongational vicosity of three at low

elongation rates, and thei' the elongational viscosity rises to infinity at a dimensionless

elongational rate of one-half. All evidence indicates that the elongational viscosities of

viscoelastic fluids rise well above the Newtonian value (one to three orders of magni-

tude).
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The steady elongational viscosity of the Oldroyd-B model with an imposed shear is

shown as the upper curve on Figure 12. The enhancement of the elongational viscosity

due to a mean shear is larger at low values of the elongation rate. The stresses produced

by the shearing are constant, so the enhancement of the elongational viscosity (which

is the ratio of stress to elongation rate) decreases as the elongation rate increases.

Therefore, enhancement of the elongational viscosity damps out small elongations more

severely than large elongations. This asymmetry agrees with the results which we nave

found experimentally in the pressure spectra of turbulent drag-reducing solutions. The

higher frequencies are attenuated to a much greater extent than the lower frequencies.

Deformation Rates As a Function of Position In the Channel

SNow let us look at the kinematics of turbulent flow. We have direct simulations of

turbulent Newtonian channel flow at a Reynolds number of 3900. A plot of the mean

and fluctuating shear rate as a function of channel position in wall units is shown in

Figure 13. These results were obtained by assuming a 2.54 cm channel height and

water as the fluid. The buffer region of the channel is located between the dotted lines.

The mean shear rate is small above the buffer region. The data in the figures presented

below are for points at a distance from the wall of 16 viscous units - the location of

the dashedline on Figures 13 and 14.

The root-mean-square (RMS) of the three elongational components as a function

of position in the channel are presented in Figure 14. The streamwise component of

elongation is the 11-term, the wall-normal is the 22-term, and the spanwise is the

33-term. All three functions peak in the buffer region. These RNIS values do not

indicate the distribution of the deformations. The peak values range from 7 to 12 s-.

These elongation rates are not measurable in experiments: they are spatial gradients of

velocity in a fluctuating velocity field. Presently. only through simulation of turbiulent

flow can these deformations be quantified.

Probability Density Function of the Streamwise Elongation Rate
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The probability density function for the streamwise component of the elongation

at a wall-normal position of 16 viscous units is shown on Figure 15 (solid squares and

solid line). A normal distribution with the same mean and standard deviation is also

shown for comparison (hollow circles and dashed line). The distribution is not a normal

distribution; the center is more peaked and there is more probability density in the tails.

Power Spectral Density of the Strearnwise Elongation Rate

The frequencies of the elongational deformations are also critical in determining the

change in the stress tensor. The power spectral density of the streamwise deformation

component as a function of frequency is presented in Figure 16. The density contains

a peak at 10 Hz, therefore it is the most common frequency for that deformation.

Energy Dissipation in Oscillating Flow Field

The average values of the steady shear, oscillating shear, oscillating elongations.

and frequency found from the data just presented can now be used to evaluate the
energy dissipation which occurs with sinusoidal deformations (Figure 17). The ratios

of the various deformations are maintained as constant, while the values of the defor-

mations are increased. The ratio of the energy dissipation for a fluid model to the

dissipation for a Newtonian fluid is plotted as a function of the strength of the de-

formations. Note that with either a retardation time or a mean shear, the reduction

in energy dissipation is minimal. In fact, if a retardation time and a mean shear are

included, then the energy dissipation is reduced only one percent. Oscillating shear

alone does not seem to be a feasible mechanism for drag reduction. The mean shear

is lower in the central portion of the flow, but the amplitude of the oscillating shear is

also lower. Most of the turbulent energy is near the walls, where the mean shear rate

is significant.

Stresses During Sinusoidal Deformations
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To determine the response of a viscoelastic fluid to the various deformations that

have been now quantified, the stresses of the viscoelastic fluid are calculated as a

function of time in a homogeneous flow field of sinusoidal elongation and steady shear.

The mean shear is assumed to be 100 s-1, the amplitudes of the shear and elongation

are 47 and 8.5 s-', respectively, the frequency of the oscillation is 10 Hz, and the

relaxation time of the viscoelastic fluid is 10 msec. Estimates in the literature range

from 3 to 50 msec. At this frequency, the shear stress is very close to the Newtonian

stress (see Figure 18).

In the case of the normal stress, the stress levels become asymmetric due to the

steady and oscillating shear, as shown on Figure 19. The "normal" stresses from the

shearing contribute the same amount of stress to both phases of the oscillating defor-

mation, so the stress is reduced during compression of the fluid element and increased

during elongation. Also, the amplitude of the oscillations are not damped, as would be

the case with no shear. The kinematics are altered by this asymmetry.

Deformation Rates

Recently, we have determined that our channel flow simulations of Newtonian tur-

bulence contained errors in comparison with experimental results. The errors in the

simulations are due to aliasing. The calculation of non-linear terms are producing ex-

cess energies at some of the wavenumbers in the spectral decomposition of the problem.

More recent simulations with de-aliasing have not been calculated up to the Reynolds

number of the older simulations, from which the kinematics presented above are ex-

tracted. At the lower Reynolds number of 2130. the steady and oscillating values of the

shear rate across the channel are reported in Figure 20. The mean shear in the buffer

layer is now about 34 s-', instead of 100 s-'. The oscillating component is about 22.

instead of 47.

The elongation rates are reduced even more, as can be seen in Figure 21. The

RMS value of the streamwise component is 2.2. instead of 6. The shapes of the curves
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are smoother and the maximums occur at the same y-location, which may be due to

the lower Reynolds number or the de-aliasing.

Viscoelastic Stresses in Turbulent Flow

We have integrated the stresses of the Oldroyd-B model as a function of time.

obtaining the deformations from the Newtonian turbulence simulations at a Reynolds

number of 2130. To obtain these results, we substitute the spatial gradient of the defor-

mation rate in place of the spatial gradient of the stress, which appears in the convected

derivative. These gradients are equal for Newtonian fluids. This approximation allows

the highly convective and non-homogeneous nature of the turbulent flow to be mod-

elled without knowing the viscoelastic stress distribution for the entire flow field. The

shear stress and the streamwise normal stress are plotted in Figure 22. Because of

the method used to non-dimensionalize the stresses, the Newtonian stresses are equal

to the negative of the deformation rate for the same component. Differences between

the Newtonian and the Oldroyd-B stresses do occur, principally in the form of a delay

between the deformation and the stress level. Much greater differences are found if the

relaxation time of the fluid is assumed to be 50 ms, instead of 10 ms. These results are

shown in Figure 23. For this relaxation time, large excursions occur in the elongational

stress due to changes in the shear rate, and the delay between stress and strain is several

relaxation times (easiest seen by examining the shear deformation and stress curves).

We expect these large differences to occur for fluids with lower relaxation times, but

at higher Reynolds numbers.

Conclusions

The "normal" stresses generated by the mean shearing which occur in the buffer

region are significant contributors to the stress levels. The ratio of mean shear to RMS

elongation is about 10.

The magnitudes of the shear and elongational deformations and the duration of

the deformations are important in selecting a constitutive equation and in deteritnin•
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which aspects of viscoelasticicy modify turbulent flow and reduce drag. These findings

are obtained from a low Reynolds number simulation, at about half the Reynolds

number at which drag reduction can be accurately measured with an aqueous solution

(60 ppm) of polyethylene oxide solution in the channel flow facility at NRL (2.54 cm

channel height). The findings discussed below probably apply in a turbulent flow

at double the calculated Reynolds number, but probably only the effect of "normal"

stresses remain at high Reynolds numbers. First, the product of twice the elongation

rate and the relaxation time is less than unity. Second, the duration of the elongations

(about 20 ms) are longer than the assumed relaxation time of the fluid (10 ms), but

shorter than some estimates (50 ms). The durations are not, however, on the order

of one hundred relaxation times, which implies elongational stresses do not reach their

steady-state values at high elongation rates.

The critical parameter, as seen in the above analysis, is the relaxation time of the

viscoelastic fluid. Knowledge of this time constant is crucial in determining the regimes

in which the flow exists with regard to deviations from Newtonian behavior. The retar-

dation time (or more precisely, the ratio of retardation to relaxation times) is also an

important parameter. The retardation time acts to dampen non-Newtonian behavior.

especially in that the retardation time decreases the "normal" stresses produced by

shearing.
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Figure 1. Orifice Flow Geometry
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Figure 2. Fiber-Spinning Geometry.
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Figure 3. Ductless Syphon Geometry.

33

i • i i •i | II • l I/ I I 11



FIgure 4. Crossed-Slots Geometry.
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Figure 5. Opposed-Jets Geometry.
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Figure 6. Four-Roll Mill Geometry.
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Figure 7. Tank Draining Through An Orifice Geometry.

A) A Newtonian fluid forms a central vortex extending down to the orifice. B) A

polymer solution develops a much weaker vortex which does not extend down to tLe

orifice.
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Figure 8. Vibrating Rod Geometry.
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Figure 9. Concentric Cylinder Geometry.
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Figure 10. Strain Rate and Vorticity As a Function of Time.

Data from the direct numerical simulations at Re = 3900, at a dlisrance fron th,

wall of 16 viscous units.
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Figure 11. Elongational Viscosity As a Function of Time.

Calculated for Oldroyd-B model with ratio of retardation time to relaxation time

of 2/3. The elongation rate times the relaxation time for both curves is 0.4. The

elongation begins at time = 0. Viscosity without imposed steady shear is lower curve

(hollow squares). Viscosity with imposed steady shear of 1.0 (relaxation time tines

shear rate) is upper curve (solid :ircles).
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Figure 12. Elongational Viscosity As a Function of Elongation Rate.

Calculated for Oldroyd-B model with ratio of retardation time to rela xation tim
of 2/3. The elongation has been continued until the stresses have reached steady-state.
Viscosity without imposed steady shear is lower curve (hollow squares). Viscosity,
with imposed steady shear of 1.0 (relaxation time times shear rate) is uipper curve
(solid circles). 'Model predicts an infinite viscosity at an elongation rate of 0.5 (lashied
vertical line).
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Figure 13. Shear Rate Across a Turbulent Channel.

Mean and root- mean- square shear rate across a channel of infinite planar extent.
Results are from a direct numerical simulation of Newtonian fl ow at Re= 3900. Data
is scaled to channel width of 2.54 cm. The buffer region is between the short-clashed

lines.
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Figure 14. Elongation Rates Across a Turbulent Channel.

Root-mean-square elongation rates across a channel of infinite planar extent. Re-

sults are from a direct numerical simulation of Newtonian flow at Re = 3000. Data

is scaled to channel width of 2.54 cm. The buffer region is between the short-daslhed

lines. The different components correspond to: 11 - streamwise. 22 - wall-normal, and

33 - spanwise.
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Figure 15. Probability Density Function of the Streamwise Elongation Rate.

Results are from a direct numerical simulation of Newtonian flow at Re = 3900.

Data is scaled to channel width of 2.54 cm and represents values at a distance from the

wall of 16 viscous units. The PDF is shown as the solid squares. A normal distribution

with the same mean and standard deviation is shown as the hollow circles.

45



1/

10

£0

Y +106
n

a.,

10.2

* 512 Pts. I

10" 10 101 102 103
f [Hz]

Figure 16. Power Spectral Density of the Streamwise Elongation Rate.

Results are from a direct numerical simulation of Newtonian flow at Re = 3900.

Data is scaled to channel width of 2.54 cm and represents values at a distance from the

wall of 16 viscous units. The PSD is shown as the solid squares.

46



0.9' S• • <?>=100 s"

-/AMP= 
4 7  s'

S0.8 -1
at f 10 Hz

0.7, , "~e--e.-o-e.-e e-e-o- -c

0.6 SHEAR LAM20.rO -: 00
0 0 0.67

• >0 0.67
0.5

10"2 1 7 1 10" 10' 1 102

Figure 17. Ratio of Energy Dissipation of Oldroyd-B M•odel to Newtonian Fluid.

Flow field is a fluctuating, homogeneous flow. The energy dissipation is plotted

as a function of frequency times relaxation time. The magnitudes of the mean shear

rate, oscillating shear rate. and oscillating elongation rate scale with the product of

the relaxation time and the frequency of both oscillations. The mean shear is 100 1,'s.

oscillating shear is 47 1/s. and the oscillating elongation is 9 1/s at a frequency of 10

Hz. The dissipation with a mean shear and a retardation time of 2/3 is shown by the

solid circles, dissipation with zero mean shear and a retardation time of 2/3 is shown

by the hollow circles, and dissipation with zero mean shear and zero retardation rime

is shown by the hollow squares.
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Figure 18. Shear Stress As a Function of Time.

Flow field is a fluctuating, homogeneous flow. The amplitudes of the mean shear

rate, oscillating shear rate, oscillating elongation rate are 100. 47, and 9 1/s. respec-

tively. The frequency of both oscillations is 10 Hz. The relaxation time of the Oldroyd-

B model is 10 ms. and the ratio of the retardation to relaxation times is 2/3. The

shear stress of the Oldroyd-B is shown by the soid circles, and the same -tress of the

Newtonian fluid is shown by the hollow squares.

48



0.5-

a 0.0 -Ei% -loo

-0.5 0

CC,

0 <-2>=100 s1
0 - -AMP= 47 S'/ .- 1

EAMP • s
.,/ f = lOHz

r.© .'0

MODELSNEWT.

-2.0 , I

90.0 92.0 94.0 96.0 98.0 100.0
TiME t/\,

Figure 19. Normal Stresses As a Function of Time.

Flow field is a fluctuating, homogeneous flow. The amplitudes of the mean shear

rate, oscillating shear rate, oscillating elongation rate are 100. 47. and 9 1/s. respec-

tively. The frequency of both oscillations is 10 Hz. The relaxation time of the Oldro 4i-B

model is 10 ms, and the ratio of the retardation to relaxation times is 2/3. The stream-

wise normal stress of the Oldroyd-B is shown by the soid circles, and the same stress

of the Newtonian fluid is shown by the hollow squares.
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Figure 20. Shear Rate Across a Turbulent Channel.

Mean and root-mean-square shear rate across a channel of infinite planar extent.

Results are from a direct numerical simulation of Newtonian flow at Re = 2130. Data

is scaled to channel width of 2.54 cm.
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Figure 21. Elongation. Rates Across a Turbulent Channel.

Root- mean- square elongation rates across a channel of infinite planar extent. Re-

sults are from a direct numerical simulation of Newtonian Hlow at Re = 21130. Data

is scaled to channel width of 2.54 cm. The different components correspond to: 11-

streamnwise. 22 - wall-normal. and 33 - spanwise.
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Figure 22. Turbulent Stresses As a Function of Time.

The shear and streamwise component of the normal stress of an Oldroyd-B model

and a Newtonian fluid are estimated as a function of time. The stresses are obtained

by integrating the constitutive equation at one point from deformations of a Nevwtonian

turbulence direct simulation at Re = 2130. The point chosen is 15 viscous units away

from the wall. The curves for the shear stress are: Oldroyd-B (solid squares and

Newtonian (hollow squares). The curves for the normal stress are: Oldrovd-B ,soid

circles) and Newtonian (hollow circles). The assumed parameters for the Oldiroyd-B

model are a relaxation time of 10 ms and a ratio of retardation time to rCe1laxation rune

of 2/3.
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Figure 23. Turbulent Stresses As a Function of Time.

The shear and streamwise component of the normal stress of an Oldroyd-B model

and a Newtonian fluid are estimated as a function of time. The stiesses are obtained

by integrating the constitutive equation at one point from deformations of a Newtonian

turbulence direct simulation at Re = 2130. The point chosen is 13 viscous units away

from the wall. The curves for the shear stress are: Oldroyd-B (solid squares) and

Newtonian (hollow squares). The curves for the normal stress are: Oldroyd-B (solid

circles) and Newtonian (hollow circles). The assumed parameters for rhe Oldroyd-B

model are a relaxation time of 50 ms and a ratio of retardation time to relaxation rime

of 2/3.
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